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Abstract: For the purpose of policy simulation in coupled social-ecological systems 
(e.g. energy supply), a credible modelling of actors – especially citizens – and their 
decision processes is needed. This requires a framework capable of handling high 
numbers of heterogeneous agents (several hundreds of thousands). In our 
presentation we describe a framework called LARA (Lightweight Architecture for 
boundedly Rational Agents) which meets these requirements and fills the gap 
between frameworks without built-in psychological foundations and full-fledged 
cognitive architectures which are both not viable options in this context. LARA 
provides prefabricated components of an agent’s decision process like perception, 
memory, and different modes of decision making. These components are 
psychologically plausible, i.e. based on appropriate psychological results and 
theories. Moreover, interfaces for basic learning and social influence are available. 
To demonstrate the flexibility of LARA, we present an exemplary application model. 
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1 INTRODUCTION 

In the modelling of coupled social-ecological systems like in various other domains, 
agent-based modelling has proven to be a useful method for investigating the 
behaviour of complex systems consisting of heterogeneous agents, i.e. autono-
mous entities which interact with each other and with their environment (Grimm et 
al [2006], Gilbert & Troitzsch [2005], Railsback [2011]). Despite the fact that social-
ecological systems include human agents, existing agent-based models (ABMs) of 
such systems often lack psychological foundations in their way of mapping human 
behaviour (Ernst [2009]). In contrast, other models of human behaviour do take 
account of empirical and theoretical psychological insights; they rely on highly 
complex cognitive agent architectures designed for a specific application context. 
Such models, however, are difficult to generalize or to be transferred to other 
contexts. Furthermore, implementing such a sophisticated model is a cumbersome 
task that requires a lot of time and technical programming capabilities. 
To escape this dilemma, a framework is needed which on one hand is based on 
psychological findings and theories and on the other hand is usable in a wider 
range of modelling contexts and simplifies the implementation of ABMs of social-
ecological systems. Especially in the field of policy simulation where a credible 
modelling of citizens is a crucial element for estimating the effects of political 
measures in the population, such a framework could enhance the usability and the 
reliability of ABMs. The LARA framework (Lightweight Architecture for boundedly 
Rational Agents) has been designed to meet these requirements and to fill the gap 
between frameworks without built-in psychological foundations and specialized full-
fledged cognitive architectures. 
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Our paper is organized as follows: The LARA framework, its components and 
processes together with an example model are described in section 2. Section 3 
explains how to use LARA, i.e. the steps which are necessary for implementing a 
concrete model based on LARA. The results of the example model are presented in 
section 4. We conclude in section 5 by pointing out the value of LARA for future 
implementations of social-ecological models. 

2 DESCRIPTION OF THE LARA FRAMEWORK 

2.1 Overview 

Built in a modular structure, the LARA framework consists of largely independent 
prefabricated components which interact to map human agents’ information 
processing, decision making and behaviour. The agents can interact with one or 
more environments, e.g. biophysical, socioeconomic, and social environment. 
These environments may be subject to exogenous and/or endogenous dynamics. 
The time concept is based on discrete time steps. 
Figure 1 shows an overview of the architecture and an agent’s standard path of 
processing in each simulation time step. The environments are perceived by the 
agent (according to its subjective information filtering); these perceptions are stored 
to the agent’s memory. The agent’s fundamental goals

1
, behavioural options and 

preference structure (goal weights) are also represented in the memory. The pre-
processor then selects an appropriate decision mode (habit, heuristics, deliberative 
evaluation) and the set of currently feasible behavioural options. The actual 
selection of a behavioural option is performed by the action selection component. 
Finally, the post-processor component is responsible for evaluation, storing and 
possible adaptations of the selected behavioural options. 
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Figure 1: Main components of LARA and their function 

2.2 Example application: The houseplant model 

We explain LARA’s basic features by modelling the growth of two indoor plants 
located at two common rooms in two different flats. Three agents (Leon, Mia, and 
Lukas) share a flat in Wilhelmshöher Allee 1 and two other agents (Ben and 
Hanna) in Herkulesstraße 2. As its social environment, each group has a unique 
collaborators network consisting of the other household members. The agents 
dispose of two behavioural options: “Irrigate” or “Do Nothing”; their goals are 
“Having a Nice Plant (HNP)” and “Being Social (BS).” Figure 2 shows a schematic 
representation of the model and the goals’ weights (cf. section 2.6) for each agent. 

                                                      
1
 By “fundamental goal”, we mean anything more or less abstract which the agent aims at in principle or 

in the long term. This subsumes notions and concepts like need satisfaction, motive, value, orientor, 
and ideal. For sake of simplicity, we will use “goal” as a synonym of “fundamental goal” in this paper. 
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Figure 2: Schematic Representation of the Houseplant Model 

In every time step (which represents one day), the environment is updated by 
setting the sunshine duration. If an agent has irrigated the plant, a fixed amount is 
added to the water stock of the plant. As well, depending on the sunshine and the 
plant’s size, water stock is reduced as growing plants consume more water. 
Subsequently, the size of every plant is updated. If its water stock is enough, the 
plant grows with a different velocity according to its size: a small plant grows faster 
than a bigger one. 

2.3 Perception 

Perception is the basic process of translating physical information external to the 
individual into a format that lends itself to further internal processing. Such an 
internal representation (of a particular attribute of an environment at a particular 
point in time) is generally called a percept. Environments can be classified into the 
three categories of biophysical, i.e. natural or built-up environments, socioeconomic 
environments, i.e. political, legal or economic constraints, and social environments, 
i.e. the network that enables social exchange and appraisal between agents (Ernst 
et al [2009]).  
A main characteristic of human perception is its strong selection and aggregation 
component. In everyday contexts, the wealth of information is significantly reduced 
during the translation process. This reduction is steered by the attention given to a 
specific item, and depends both on top-down individual motivation and 
characteristics of the physical signal. The more realistic an agent-based model 
becomes and the more data it encompasses, the more important such attentional 
processes become. 
Qualitative and quantitative perceptions can be transformed into symbolic, internal 
representations, e.g. by some form of evaluation or appraisal (threshold values), 
which are then aggregated appropriately and stored in memory. 
In our example model, every agent perceives the sunshine of the current day, the 
water stock of the plant, and the percentage of collaborators that did irrigate in the 
last time step. 

2.4 Memory 

Elements stored in human memory either stem from the perception of external 
signals or are the result of cognitive, internal operations. Many of the behavioural 
phenomena discussed as bounded rationality are related to processes of human 
memory that make it differ from a simple, yet perfect data repository. E.g., 
forgetting of elements stored in long-term memory is dependent on the character of 
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the elements, with highly connected and significant elements being retained longer 
than isolated or insignificant elements.  
Together with the observed element, humans usually retain (part of) the context of 
that perception together with it. E.g., not only a story is remembered, but where it 
was told as well. This stored situational context also proves crucial in recalling 
elements from memory when needed.  
As a general architecture, LARA provides a standard implementation to represent 
these basic phenomena.  
The entries of the agents’ memory – which may be quantitative and/or qualitative – 
are formed on the basis of current percepts each of which being composed of the 
following elements: 

 the percept itself, 

 the current context, 

 the time the entry was memorised, and 

 possibly the retention time of the entry. 
In general, a context represents a relevant subset of the state of the agent at the 
time the perception occurred. Therefore, entries can be marked with a key that 
represents the according context adequately and possibly hierarchically and 
enables the retrieval of all entries for a particular context. 
The retention time of an entry – which may be different for different percepts and 
contexts – is set when the entry is created. It determines how long the entry will 
remain in memory. Moreover, the architecture allows for entries which are not 
directly grounded in perception such as cognitions about causal relations or 
inferences etc. as may be generated by the post-processor. 
In addition to storing new entries, the memory component is used in different ways 
throughout the various LARA components like e.g. collecting experience, forming 
habits or learning. Details are documented in the following sections. 

2.5 Decision modes, decision trees and the preprocessor 

Humans are able to tune their behavioural responses to the current situational ne-
cessities and the resources they have. We distinguish three types of responses 
which we call the habitual, heuristic, and deliberative decision mode, respectively. 
Most of daily behaviour seems to be habit driven (Aarts & Dijksterhuis [2000]), e.g. 
mobility behaviour or water and energy use. This represents a “fast lane” of 
behaviour that is useful when positive previous experiences with a situation exist 
and a known behavioural option can be readily applied. 
If this is not the case, current situation and available behavioural responses have to 
be elaborated and matched in a conscious, reflexive process. This process has to 
rely on knowledge about the utility of the behavioural options in the current situation 
– knowledge which has to be gathered beforehand or generated by mental 
simulation processes. In decision theory, this is often called goal-directed, multi-
attribute utility decision making (Baron [2000]).  
Where such deep knowledge cannot be provided, humans tend to apply rules-of-
thumb, so-called heuristics (Gigerenzer et al [2001]). They operate on a very 
restricted set of available pieces of knowledge, but provide however suitable 
behavioural responses for a wide range of situations.  
The preprocessor of LARA has the tasks of determining the decision mode for a 
given situation and of setting the context for the process of action selection which 
follows. As depicted in Figure 3 the pre-processor encompasses up to five steps. 
The decision mode selector assigns the way the agent selects the behavioural 
option(s) to be performed with respect to the demands of a particular situation. 
LARA currently supports deliberative decision making, decision trees, and habit. 
For instance, the mode selector can evaluate previously executed behavioural 
options (BOs) and use a BO as a habit for a certain context if it was executed 
repeatedly and successfully before. Some or all of the following pre-processing 
steps then become obsolete and do not need to be executed. 
The BO collector retrieves behavioural options from the agent's memory. Here, the 
number of considered BOs may be limited by retrieving only those that were 
updated during the last x time steps. The BO pre-selector filters out context-
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irrelevant behavioural options. The default pre-selector retains only those BOs that 
do have at least one non-negative utility for any of the relevant fundamental goals. 
Updating of a behavioural option's utility values is triggered by the BO updater. It is 
also responsible for quantifying those entries in memory that are represented 
qualitatively in order to enable the evaluation of those behavioural options. As 
default, the BO updater delegates this task to each of the BOs. Finally, the goal 
weights are updated by the preference updater. 
If needed for a special model purpose, the above described order of execution may 
be modified by the decision mode selector. 

 

Figure 3: These steps are usually performed in the pre-processing stage 

Decision trees are provided by LARA in order to model rule-based decision making. 
The modeller builds up the tree by choosing left and right branches and defining an 
evaluate method that decides which sub-tree to follow. The leaves of the decision 
tree represent the selected BO(s). 
The habit decider automatically selects the behavioural option which was chosen 
the last time, whereas the exploration decider selects a BO from the pre-processed 
set at random. 
In our example model, if the plant’s water stock is appropriate, agents act according 
to their habits and deliberation does not take any role. However, if water stock of 
the plant is not appropriate, every agent deliberates about irrigating a plant or not. 

2.6 Action selection and situational utility 

After the stage has been set by pre-processing the situational information from 
perception, memory, and internal states, an appropriate decision has to be made. 
While habitual behaviour consists of a mere “same as before” and heuristics are 
represented as decision trees in the pre-processor, deliberative decision making 
combines characteristics of the current situation and individual aspects of the 
decision maker.  
We do suppose that people deliberately pursue their goals, whatever may be the 
nature of these goals, if there are degrees of freedom to do so. The core elements 
for deliberate decision making encompass 
(a) a decision maker’s goal preferences, 
(b) a set of behavioural options from which a response appropriate to a given 

situation can be chosen, and 
(c) some knowledge about the utility of some behavioural option to one or more of 

the decision maker’s goals, thus linking both (a) and (b) (Ernst [2003]). 
This knowledge is acquired over the course of action and serves to build 
expectations about outcomes of own behaviour. The specific ways of weighting and 
aggregating such situational knowledge may vary from situation to situation and 
from person to person.  
Crucial to the realism of a citizen agent is its capability to adapt its behaviour to 
changing circumstances. While a gradual low level behavioural adaptation can be 
readily represented in the LARA framework, higher level learning requires artificial 
intelligence mechanisms that are not an integral part of the architecture presented 
here. In any case, human learning stems from the evaluation of the satisfaction with 
the outcomes of one’s actions in a given situation. Indicators of goal attainment, 
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utility of behavioural options, and of competence to master certain situations should 
be available to be stored in memory and serve as a basis for further actions (Ernst 
[2003]). 
The agent’s beliefs concerning the effectiveness of its available behavioural options 
for the pursuit of its fundamental goals are represented in LARA as the agent’s 
basic utility matrix. For each pair of behavioural option and goal, the corresponding 
matrix element measures how appropriate this behavioural option seems to the 
agent for attaining this goal. Negative values are allowed (indicating that this 
behavioural option is detrimental for the attainment of that goal). 
Each of the agent’s various goals is associated a number – the goal’s weight – 
which represents the basic subjective importance of that goal for the agent. 
Due to situational circumstances, the current, effective goal weights of an agent 
may differ from the above mentioned basic weights. For example, the current value 
of a state variable (of the agent or of one of its environments) may boost the 
urgency to attain a certain goal, or a specific situation may offer an opportunity for 
attaining a certain goal, which therefore becomes temporarily more important. This 
phenomenon may even reverse the agent’s goal preferences in a particular time 
step. The situational impact on goal weights is mapped by goal-specific factors; to 
obtain the situational goal weight, the basic goal weight is then multiplied by the 
corresponding factor. 
If the agent decides in deliberative mode, the agent’s actual selection of a 
behavioural option will then be based on the situational utility matrix, which is 
obtained by multiplying each element of the basic utility matrix with the situational 
weight of the corresponding goal. So this matrix reflects the partial utilities of the 
various behavioural options in light of the goal importances under the current 
conditions (represented by the situational goal weights). Finally, a deliberative 
choice component (chosen by the modeller) selects one or more BOs for execution; 
e.g., the maximum sum deliberative choice component selects the behavioural 
option with highest sum of situational partial utilities. 
In the houseplant model, under the deliberative decision mode, the behavioural 
option “Irrigate” is more valuable for the agent when the agent has a high 
preference for having a nice plant and being social and/or if the plant has a strong 
need for water. On the contrary, too much water makes this behavioural option less 
attractive. The utility of the behavioural option “Do Nothing” is set opposite to the 
utility of “Irrigate” in an obvious way. 

2.7 Post-processing 

Sometimes the mere fact of having taken a decision for or against a particular 
course of action can affect ones appraisal of that option or that decision. It can be 
observed that decisions, once made, are immunized against conflicting evidence 
and kept a certain time (Montgomery [1987]). 
LARA provides an interface for such (possibly irrational) post-processing of 
decisions. The post-processor component is triggered after deciding and before 
performing the action in order to evaluate the decision and store selected 
behavioural options in the agent’s memory. It can be easily extended by user-
defined classes that incorporate behaviour as mentioned above. Furthermore, the 
architecture’s flexibility allows the modeller to integrate further steps, e.g. updating 
the BO’s utility after taking action in the sense of simple learning. 

3 FRAMEWORK IMPLEMENTATION 

The framework's design reflects the pursuit of flexibility, light weight and 
performance. Its architecture is strongly component-based. Each aforementioned 
component (perception, memory, pre-processor, decision making, post-processing) 
is independent, and coupling is realised by an event-bus: Subsequent components 
subscribe at the event-bus for certain events. The current component then 
publishes a certain event, and the event-bus triggers subscribed instances for that 
particular event. Thus, the event-bus supports flexible flow control and state-
dependent activation as well as ordering of component execution. It allows the 
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definition of depending events that need to be executed before another one. 
Furthermore, parallel execution of tasks becomes easier. As each decision is 
identified by a decision configuration object, it is possible to define several 
decisions for potentially different agent groups that are executed sequentially or in 
parallel. 
The framework is programmed in Java and thus ensures platform independence. 
As an agent framework it may be used stand-alone or integrated in every Java-
based ABM-framework, for instance Repast Simphony (North [2007]). Since LARA 
allows the attachment of required code on the agent side as an agent component it 
can be easily linked to existing agent-based models. 
Many parts of the components use fine grained interfaces with default classes that 
may be exchanged by user-defined realisations of that interface (e.g. the decision 
mode selection class). The incorporation of Log4J as an accurately configurable 
logging framework and the use of a random number manager facilitate the analysis 
of agent-based models developed with LARA. 

4 RESULTS OF AN EXAMPLARY SIMULATION RUN 

The results of a simulation run for the example model are summarized in Figure 4 
below. The upper first section of the figure shows sunshine duration within one 
solar year on a daily basis taken from sample observations. In the second part of 
the figure, it is plotted how the agents have chosen to act in Wilhelmshöher Allee 1 
and Herkulesstraße 2 according to their goals and preferences; that is, when they 
decide either to irrigate or not. Below the representation of agent behaviour, it is 
shown how the water stock of each plant fluctuates as it is affected by sunshine 
duration, behaviour of the agents, and actual plant’s size. Finally, the development 
of the plants size during the simulation is shown. 

 

Figure 4: Summary of Simulation Results 
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In the very beginning the agents in both communities irrigate the plant, which then 
becomes habitual. When the water amount reaches a too high level, the agents 
make a deliberative decision every day until the water level drops below the critical 
level. Then to not water the plant becomes habitual until the water amount gets too 
low as the sunnier period of the year begins. Subsequently this cycle repeats in 
intervals of changing duration, depending on the amount of sunshine and the 
diversity of the communities. 

5 CONCLUSION 

We have presented a psychologically well-founded framework for agent-based 
modelling of social-ecological systems which is capable of handling large numbers 
of heterogeneous agents and provides different situation-specific modes of decision 
making. The LARA framework fills the gap between ABM frameworks without 
psychological foundations and highly specialized cognitive architectures which have 
been designed for a very specific application context. 
The architecture’s component-based nature in combination with the event-bus 
approach allows the modeller to easily interchange pre-defined LARA components 
with classes adapted to the application model’s needs. Thus, LARA is usable in a 
wide range of modelling contexts, especially in policy modelling, and facilitates an 
appropriate implementation of decision models. At CESR, LARA is currently being 
used in two projects: SPREAD (Scenarios of Perception and Reaction to 
Adaptation), which investigates the spreading of socio-technological innovations in 
the renewable energy sector like switching to green electricity and investing in 
community managed solar plants), and KUBUS (Supporting regional climate 
change adaptation by means of socio-environmental surveys and scenario 
development), where simulations are used to better understand the public reaction 
to policy-defined adaptation strategies via the individual processes of adaptation to 
climate change. 
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